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Preface. The year 1987 was the centenary of Ramanujan's birth. He died in 1920

Had he not died so young, his presence in modern mathematics might be more
immediately felt. ttad he lived to have access to powerful algebraic manipulation
._fftware, such as MACSYMA, who knows how much more spectacular his already
astonishing career might have been.

This article will follow up one small thread of Ramanujan's work which has

found a modern computational context, namely, one of his approaches to approxi-
mating pi. Our experience has been thal as we have come to understand these pieces
of Ramanujan's work. as they have become mathematically demystified, and as we

have come to realize the intrinsic complexity of these results, we have come to
realize how truly singular his abilities were. This article attempts to present a
considerable amount of material and. of necessity, little is presented in detail. We
have. however, given much more detail than Ramanujan provided. Our intention is

that the circle of ideas will become apparent and that the finer points may be
pursued through the indicated references.

I. Introduction. There is a close and beautiful connection between the transfor-

mation theory for elliptic integrals and the very rapid approximation of pi. This
connection was first made explicit by Ramanujan in his 1914 paper "Modular

Equations and Approximations to _r'" [26]. We might emphasize that Algorithms 1
and 2 are not to be found in Raman'ujan's work. indeed no recursive approximation

of _" is considered, but as we shall see Ihey are intimately related to his analysis.
Three central examples are:

Sum i. (Ramanujan)
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Then

0 < a.- i/*r < 16-4"e-2 4".
,

and a. converges to l/v quartically (thai is, with order four).

Alll_thm 2. Let so ,- 5(Vt5 - 2) and a o _- !/2.
Let

25
SR* I :1

(z + x/z + 1)2$."

where

and

Let

Then

x ,- 5/s. - 1 y :- (x - 1)' + 7

Z:" x y+

t $._- 5 }..., ,- - 5/--5- + - 2$.÷5)

1
0<a.- - < 16-5"e-5"

f

and a. converges to 1/_ quinticaily (that is, with order five).
Each additional term in Sum I adds roughly eight digits, each additional iteration

of Algoridun 1 quadruples the number of correct digits, while each additional

iteration of Algorithm 2 quintuples the number of correct digits. Thus a mere
thirteen iterations of Algorithm 2 provide in excess of one billion decimal digits of

pi. in general, for us, pth-order convergence of a sequence (a.) to a means that a.
tends to a and that

la..i - al _ Cla.- air

for some constant C > 0. Algorithm 1 is arguably the most efficient algorithm

currently known for the extended precision calculation of pi. While the rates of
convergence are impressive, it is the subtle and thoroughly nontransparent nature of
these results and the beauty of the underlying mathematics that intrigue us most.

Watson 137]. comting on certain formulae of Ramanujan, talks of

a thrill which is indistinguishable from the thrill which ! feel when ! enter the

Sagrestia Nuooo of the Capella Medici and see before me the auslere beauty of

the four statues representing _Day," " Night," "Evening," and " Dawn" which

Michelangelo has set over the tomb of Giuliano de'Medici and Lorenzo
de" Medio.

Sum 1 is directly due to Ramanujan and appears in [26]. It rests on a modular

identity of order 58 and, like much of Ramanujan's work, appears without proof

and with only scanty motivation. The first complete derivation we know of appears
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in I111. Algorithms I and 2 are ba_cd on m(_ular identities of orders 4 and 5,

respectively. The underlying quintic modular identity in Algorithm 2 (the relation

for .s, ) is also due to Ramanujan. though the first proof is due to Berndt and will

appear in [71.
One intention tn writing this article is to explain the genesis of Sum I and of

Algorithms I and 2. It is not possible to give a short self-contained account without

assuming an unusual degree ol' familiarity with modular function theory. Also. parts

of the derivation involve considerable algebraic calculation and may most easily be

done with the aid of a symbol manipulation package (MACSYMA, MAPLE,

REI)UCE, etc.). We hope however to give a taste of methods involved. The full

details are available in [11].
A second intention is very briefly to de_ribe the role of these and related

approximation', in the recent extended precision calculations of pi. In part this

entails a short discussion of the complexity and implementation of such calcula-

tions. This centers on a discussion of multiplication by fast Fourier transform

methods. Of considerable related interest is the fact that these algorithms for ?r arc

provably close to the theoretical optimum.

2. The State of Our Current Ignocance. Pi is almost certainly the most natural of

the transcendental numbers, arising as the circumference of a circle of unit diame-

ter. Thus, it is not surprising that its properties have been studied for some

twenty-five hundre.d years. What is surprising is how little we actually know.

We know that *r is irrational, and have known this since Lambert's proof of 1771

Isec [5]). We have known that ,r is transcendental since Lindcmann's proof of 1882

[23]. We also know that ,r is not a Liouville number. Mahler proved this in 1953. An
irrational number ,8 is L_ouville if. for any n. there exist integers p and q so that

0<P- <q,

Liouville showed these numbers arc all transcendental. In fact we know that

'n'- > ql465

for p, q integral with q sufficiently large. This irrationality estimate, due to

Chudnovsky and Chudnovsky [16] is certainly not best possible, it is likely that

14.65 should be replaced by 2 + e for any t > 0. Almost all transcendental numbers

satisfy such an inequality. We know a few related results for the rate of algebraic

approximation. Tbe results may be pursued in [4] and [11].• "- -1 -'and
u,. t, ..... hat • ° is transcendental This follows by noting that • (1) , .

applying the Gclfond-Schncidcr theorem [,1]. We know that ¢ + log2 + _/2 Iog-_ ns
transcendental- This result is a consequence of the work that won Baker a Fields

Medal in 1970. And wc know a few more than the first two hundred million digits

of the decimal expansion for _r (Kanada. see Section 3).

The state of our ignorance is more profound. We do not know whether such basic

constants as *r + e, *r/e. or log *r are irrational, let alone transcendental. The best

we can say about these three particular constants is that they cannot satisfy any

polynomial of degree eight or less with integer coefficients of average size less than

109 [31. This is a consequence of some recent computations employing the
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Ferguson-Forcade algorithm [1"/[. We don't know anylhing of consequence ahou!

the single continued fraction of pi, except (numerically) the first 17 million terms.

which Gosper computed in 1985 using Sum I. Likewise. apart from listing the firsl

many millions of digits of ¢. we know virtually nothing about the decimal expan-

sion of ¢. It is possible, albeit not a g_a_ bet. Ihat all but finitely many of the

decimal digits of pi are in fact 0's and I's. Carl Sagan's recent novel Co.tacl rests on

a similar possibility. Questions concerning the normality of or the distribution of

digits of particular transcendentals such as _ appear completely beyond the scope
of current mathematical techniques. The evidence from analysis of the first thirty

million digits is that they are very unih_rmly distributed 12] Ihe next one hundred

and mventy million digits apparently contain no surprises.

In part we perhaps settle for computing digits of ¢ because there is little else we

can currently do. We would be amiss, however, if we did not emphasize that the

extended precision calculation of pi has substantial application as a test of the

"'global integrity" of a supercomputer. The extended precision calculalions de-
scribed in Section 3 uncovered hardware errors which had to be correcled before

those calculations could be successfully run. Such calculalions, implemented as in

Section 4, are apparently now used routinely to check supercomputers before they

leave the factory. A large-scale calculation of pi is entirely unforgiving; it soaks into

all parts of the machine and a single bit awry leaves detectable consequences.

3. Matters Computational

I am ashamed to tellyou to how man)_ figures I carried these calculat.,n¥, hat,rag

no other business at the time.
Is_uc Ne_'t_m

Newton's embarrassment at having computed 15 digits, which he did using the

arcsinlike formula

= -- +24 ........

375 fo:__ _= -- + 24 dx,
4

is indicative both of the spiritin which people calculate digits and the fact that a

surprising number of people have succumbed to the temptation [51.

The history of efforts to determine an accurate value for the constant we now

know as s, is almost as long as the history of civilization itself. By 2000 e.c. both the

Babylonians and the Egyptians knew sr to nearly two decimal places. The Babyloni-
ans used, among others, the value 3 1/8 and the Egyptians used 3 13/81. Not all

ancient societies were as accurate, however--nearly 1500 years later the Hebrews

were perhaps still content to use the value 3, as the following quote suggests.

Also, he made a molten sea o/ten cubits/rom brim to brim, round in compass.

and five cubits the height thereo/; and a line o/ thlr(_'cubits did compuss it round

about. Old Testamem. 1 Kings 7:23

Despite the long pedigree of the problem, all nonempirical calculations have

employed, up to minor variations, only three techniques.
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i) "lhc first technique due to Archimedes of Syracuse (287 212 e.c.) is, recur-

sively, to calculate the length of circum.,,cribcd and inscribed regular 6. 2"-gons

about a circle of diameter I. (,'all these quantities a, and b,. respectively. Then

a, := 2¢3, h. := 3 and. as (;auss's teacher Pfaff discovered in 1800,

2,,.h. and h,,,,:=_"i_.
a_. I a n + h

Ardumedes, with n = 4. obtained

3',';< ,, < 3',

While hardly better than estimates one could get with a ruler, this is the first methi_l

that can be used to generate an arbitrary number of digits, and to a nonnumerical

mathematician perhaps the problem ends here. Variations on this theme provided

the basis for virtually all calculations of _r for the next 1800 years, culminating with

a 34 digit calculation due to Ludolph van Ceulen (1540-1610). This demands

polygons with about 2 _) sides and so is extraordinarily time consuming.

ii) Calculus provides the basis for the second technique. The underlying method

relies on Gregory's series of 1671

dt ._ _ x5

1'arctan x = t2 x -- + ..... Ixl _ I_1+ 3 5

coupled with a formula which allows small x to be used. like

- = 4 arctan - arctan _ .4

This particular formula is due to Machin and was employed by him to compute 100

digits of n in 1706. Variations on this second theme are the basis of all the

calculations done until the 1970's including William Shanks" monumental hand-

calculation of 527 digits. In the introduction to his book 13Zl. which presents this

calculation, Shanks writes:

Towards the close o/the year 1850 the Author first formed the design of rectifying

the circle to upwards of 300 places of decimals. He was fully aware at that time.

that the accomplishment of his purpose would add little or nothing to his fame as a

Mathematician though it might as a Computer; nor would it be productioe of

an.vthmg in the shape of pe_umary recompense.

Shanks actually attempted to hand-calculate 707 digits but a mistake crept in at

the 527th digit. This went unnoticed until 1945, when D. Ferguson, in one of the

last "'nondigitar' calculations, computed 530 digits. Even with machine calculations

mistakes occur, so most record-setting calculations are done twice--by sufficiently

different methods.
The advent of computers has greatly increased the scope and decreased the toil of

such calculations. Metropolis, Reitwie_r, and yon Neumann computed and ana-

lyzed 2037 digits using Machin's formula on ENIAC in 1949. In 1961, Dan Shanks

and Wrench calculated 100,000 digits on an IBM 7090 [31]. By 1973, still using

Machin-like arctan expansions, the million digit mark was passed by Guillard and

Bouyer on a CIX" 7600.
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iii) The third technique, based on the transformation theory of elliptic integrals.
provides the algorithms for the most recent set of computations. The most recent
records are due separately to Gosper, Bailey, and Kanada. Gosper in 1985 calcu-
lated over 17 million digits (in fact over 17 million terms of the continued fraction)
using a carefully orchestrated evaluation of Sum I.

Bailey in January 1986 computed over 29 million digits using Algorithm l on a
Cray 2 [2]. Kanada, using a related quadratic algorithm (due in basis to Gauss and
made explicit by Brent [121 and Salamin [2"7])and using Algorithm I for a check,

verified 33,554,000 digits. This employed a HITACHI S-810/20. look roughly eight
hours, and was completed in September of 1986. In January 1987 Kanada extended
his computation to 22_decimal places of _r and the hundred million digit mark had
been passed. The calculation took roughly a day and a half on a NEC SX2 machine.
Kanada's most recent feat (Jan. 1988) was to compute 201.326,000 digits, which
required only six hours on a new Hitachi $-820 supercomputer. Within the next few

years many hundreds of millions of digils will no doubt have been similarly
computed. Further discussion of the history of the computation of pi may be found
in [5] and [9J.

4. Complexity Co_.'efm. One of the interesting morals from theoretical com-
puter seience is that many familiar algorithms are far from optimal. In order to be
more precise we introduce the notion of bit complexity. Bit complexity counts Ihe
number of single operations required to complete an algorithm. The single-digit

operations we count are +,-,x. (We could, if we wished, introduce storage and

logical comparison into the count. This, however, doesn't affect the order of growth
of the algorithms in which we are interested.) This is a good measure of time on a

serial machine. Thus, addition of two n-digit integers by the usual method has bit
complexity O(n), and straightforward uniqueness considerations show this to be
asymptotically best possible.

Multiplication is a different story. Usual multiplication of two n-digit integers
has bit complexity O(n 2) and no better. However, it is possible to multiply two
n-digit integers with complexity O(n(IognXIoglogn)). This result is due to

Sch/Snhage and Strassen and dates from 1971 I_]. It provides the best bound known

for multiplication. No multiplication can have speed better than O(n). Unhappily,
more exact results aren't available.

The original observation that a faster than O(n 2) multiplication is possible was
due to Karatsuba in 1962. Observe that

(a + bl0")(c + d]0") = ac + [(a - b)(c - d) - ac - bd]10" + ball02".

and thusmultiplicationof two 2n-digitintegerscan be reducedto threemuhiplica-

lionsof n-digitintegersand a few extraadditions.(Of coursemultiplicationby I0"

isjusta shiftof thedecimalpoint.)Ifone now proceeds recursivelyone produces a
multiplicationwith bitcomplexity

O(n_,3).

Note thatlog23 = 1.58...< 2.

We denote by M(n) the bit complexity of multiplyingtwo n-digitintegers

togetherby any method thatisat leastas fastas usualmultiplication.

The trickto implementinghigh precisionarithmeticis toget themultiplication

right.Divisionand rootextractionpiggyback off multiplicationusing Newton's
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meth_NJ. One may use the iteration

"XA _ I _ 2XA -- "_ V

to compute I/y and the iteration

'( *tX/,,! = _ X k "+ --
X A

tO compute i/r. One may also compute l/ V/_' from

_,(3 - .,'-*I)
X**I 2

and so avoid divisions in the computation of V/_. Not only do these iterations
converge quadratically but. because Newton's meth(_ is self-correcting (a slight

perturbation in x, does not change the limit), it is possible at the k th stage to work
only to precision 2*. If division and root extraction are so implemented, they both
have bit complexity O(M(n)), in the sense that n-digit input produces n-digit

accuracy in a time bounded by a constant times the speed of multiplication. This
extends in the obvious way to the solution of any algebraic equation, with the
startling conclusion that every algebraic number can be computed (to a-digit
accuracy) with bit complexity O(M(n)). Writing down n-digits of t/_ or 3V'7 is (up
to a constant) no more complicated than multiplication.

The Sch6nhage-Strassen multiplication is hard to implement. However, a multi-
plication with complexity O((Iog n)Z"n) based on an ordinary complex (floating

point) fast Fourier transform is reasonably straightforward. This is Kanada's
approach, and the recent records all rely critically on some variations of this
technique.

To see how the fast Fourier transform may be used to accelerate multiplication,

let x := (x o. x n, x _..... x,_ l) and y :- ( Yo. Yl, Y2 ..... Y,, - L) be the representations
of two high-precision numbers in some radix b. The radix b is usually selected to be

some power of 2 or 10 whose square is less than the largest integer exactly
representable as an ordinary floating-point number on the computer being used.
Then, except for releasing each "carry," the product z :- (z 0, z I, z 2..... z2,, - n) of x

and y may be written as

Z0 -- XOy0

Zn -- XoYt + xn._

z2 -- XoY2 + xlyl + X2Yo

z,_ t - XoY,,_ t + x,y,,_ 2 + ... +x,,_ny 0

Z2i_ 3 m Xn_l._n_ 2 -Ip Xa_2ya_ I

Z2n_ 2 I X.__I_._ I

ZZR- I " O.

Now consider x and y to have n zeros appended, so that x, y, and z all have
length N = 2n Then a key observation may be made: the product sequence z is
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precisely the discrete convolution C(x, y):

N 1

z i = qlx, y) = Y'. x,._', ,.
l-O

where the subscript k -j is to be interpreted as k -j + N if k -S is negatwe.

Now a well-known result of Fourier analysis may be applied. Let F(._ ) denote

the discrete Fourier transform of the sequence x, and let F t(_) denote the inverse

discrete Fourier transform of x:

N-I

['k(X) := ___ Xle -2.'I_/N

I'0

l N- ,

F,_'(_) =- _ E ,,,e'""/".
j-O

Then the "convolution theorem," whose

that

Flc(_, y)]

or, expressed another way,

proof is a straightforward exercise, states

- F(_)F(y)

c(., y) = F '[F(_)F(_,)I.

Thus the entire multiplication pyramid z can be obtained by performing two

forward discrete Fourier transforms, one vector complex multiplication and one

inverse transform, each of length N - 2n. Once the real parts of the resulting

complex numbers have been rounded to the nearest integer, the final multiprecision

product may be obtained by merely releasing the carries modulo b. This may be

done by starting at the end of the z vector and working backward, as in elementary

tchool arithmetic, or by applying other schemes suitable for vector processing on

more sophisticated computers.

A straightforward implementation of the above procedure would not result in

any computational savings--in fact. it would be several times more costly than the

usual "schoolboy" scheme. The reason this scheme is used is that the discrete

Fourier transform may be computed much more rapidly using some variation of the

well-known "fast Fourier transform" (FFT) algorithm [13]. In particular, if N - 2",

then the discrete Fourier transform may be evaluated in only 5m2" arithmetic

operations using an FFT. Direct application of the definition of the discrete Fourier

transform would require 2 2''*J floating-point arithmetic operations, even if it is

assumed that all powers of •-zo,/# have been precalculated.

This is the basic scheme for high-speed muhiprecision multiplication Many

details of efficient implementations have been omitted. For example, it is possible to

take. advantage of the fact that the input sequences x and y and the output

sequence z are all purely real numbers, and thereby sharply reduce the operation

count. Also. it is possible to dispense with complex numbers altogether in favor of

performing computations in fields of integers modulo large prime numbers. Inter-

ested readers are referred to [2], [81, It31, and 1211.
When the costs of all the constituent operations, using the best known tech-

niques, are totalled both Algorithms 1 and 2 compute n digits of _r with bit

complexity O( M(n)log n). and use O(Iog n) full precision operations.
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The bit complexity for Sum I, or for _r using any or the arctan expansions, is

belwecn 0(( log n )_M(n)) and O(nM(n)) depending on implementation. In each

case. one is required It sum O(n) terms of the appropriate series• Done naively, one

obtains the latter bound. If the calculation is carefully orchestrated so that the terms

are grouped to grow evenly in size (as rational numbers) then one can achieve the

former bound, but with no corresponding reduction in the number of operations•

The Archimedean iteration of ,_ction 2 converges like 1/4" so in excess of n

iterations arc needed for n-digit accuracy, and the bit complexity is O(nM(n)).

AImo_,t any familiar transcendental number such as e, y, _'(3), or Catalan's

constant (presuming the last three to be nonalgebraic) can be computed with bit

complexity O((Iog n )M( n )) or O((Iog n)_M(n)). None of these numbers is known

to be computable essentially any faster than this. In light of the previous observa-

t,on that algebraic numbers are all computable with bit complexity O(M(n)), a

proof that _ cannot be computed with this speed would imply the transcendence of

_r. It would, in fact. imply more. as there arc transcendental numbers which have

complexity O(M(n)). An example is 0.10100100(X)l ....

It is al_ rea.sonable to speculate that computing the nth digit of _ is not very

much easier than computing all the first n digits. We think it very probable that

computing the nth digit of _ cannot be O(n).

tO

of

of

complete elliptic integrals o/the f|rst and second kind. respectively.

dt

K(k ) _=_,i'"
_/1 - klsinlt

and

E(k ) :- f'/2_/l - kZsinZt dr.
at

5. 'l_e Miracle ol Theta Functions

When I was u student, abehun functionr were, as an effect o/ the Jacobmn

trudlt,m, considered Ihe unconteYted summit of mathematics, and each of us was

amhltu_uv to make progress in thl_ feeld. And now? The younger generation
hardIv knows aheltan /unctiorls.

Felix Klein [21]

Felix Klein's lament from a hundred years ago has an uncomfortable timelessness

it. Sadly, it is now possible never It see what Bochner referred to as "the miracle

the theta functions" in an entire university mathematics program. A small piece

this miracle is required here [6]. Ill], [28]. First some standard notations. The

(5.0

(_ .2)

The second integral aris_ in the rectification of the ellipse, hence the name elliptic

integrals. The complementary modulus is

k':=V_-k z

and the complememaq, integrals K' and E' arc defined by

K'(k):- K(k') and E'(k)== E(k').

The first remarkable identity is Le/lendre's relalion namely

e(k)K'(k) + E'(k)K(k) - K(k)K'(k) = - (s.3)
2

I
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(for 0 < k < ]), which is pivotal in relating these quantities to pi. We also need Io
definetwo Jacobianrheta/unctions

02(q) := __. q'"+ ,/,_' (5.4)
_- oo

and

O)(q) := _-- q"" (55)
=l-- - oo

These are in fact specializations with (! - O) of the general Iheta functions. More
generally

O_(t,q) == _. q'_e 'm, (imt> 0)
we. -oo

with similar extensions of O z. In Jacobi's approach these general thela functions

provide the basic building blocks for elliptic functions, as functions of r (see [il].[391).

The complete elliptic integrals and the special theta functions are related as
follows. For Jq[ < 1

K(k ) = "_O;(q) (5.6)

and

where

and

E(k)= (k')Z[K(k)+kdK(k-_]. (5.7)

O_(q) O z(_q)

k :- k(q) - Oz---_, k" :- k'(q) O_(q) (5.8)

q _ e-tg'(k)/g(1).

The modular/unction ), is defined by

. [O,(q)]'
X(t),-_(q)=-k'(q): [_3---_J'

where

(5.9)

(s.lo)

q :_ e Iwa.

We wish to make a few comments about modular functions in general before
restricting our attention to the particular modular function _. Modular/unc,ons are
functions which are meromorphic in H. the upper half of the complex plane, and

which are invariant under a group of linear fractional transformations. G. in the
sense that

/(s(_)) =/(_) v_ _ _.
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[Additional growth conditions on f at certain points of the associated fundamental

region (see below) are also demanded.] We restrict G to be a subgroup of the

modular group F where [" is the set of all transformations w of the form

at+b

w(t) ct + d'

with a, b, c,d integers and ad - bc = I. Observe that F isa group under composi-

tion.A fuadumema/region F_; isa set in II with the property that any element in H

is uniquely the image of some element in F_; under the action of G. Thus the

behaviour of a modular function is uniquely determined by its behaviour on a

fundamental region.

Modular functions are. in a sense, an extension of elliptic (or doubly periodic)
functions---functions such as sn which are invariant under linear transformations

and which arise naturally in the inversion of elliptic integrals.

The definitions we have given above are not complete. We will be more precise in

our discussion of ,_. One might bear in mind that much of the theory for h holds in

considerably greater generality.

The fundamental region F we associate with h is the set of complex numbers

F:= {imt > 0} n [{Iretl < 1 and

12t± 11> l} u {ret = -l} u {12t + il- i}l.

The h.group (or Iheta-subgroup) is the set of linear fractional transformations w

satisfying

at +b

w(t) := --
ct+ d"

where a, b, c,d are integers and ad - bc = I, while in addition a and d are odd

and b and c are even. Thus the corresponding matrices are unimodular. What

makes ,_ a ,X-modular function is the fact that h is meromorphic in {im t > O} and
that

h(w(t)) :- h(t)

for all w in the h-group, plus the fact that h tends to a definite fimit (possibly

infinite) as t tends to a vertex of the fundamental region (one of the three points

(0. - 1). (0,0), (i, oo)). Here we only allow convergence from within the fundamental

re, on.

Now some of the miracle of modular functions can be described. Largely because

every point in the upper half plane is the image of a point in F under an element of

the A-group. one can deduce that any h-modular function that is bounded on F is

constant. Slightly further into the theory, but relying on the above, is the result that

any two modular functions are algebraically related, and resting on this. but further

again into the field, is the following remarkable result. Recall that q is given by

(5.9).

TtIEOREM i. Let z be n primitive pth root of unit), for p an odd prime. Consider the

pill order modular equation for k as defined by

w(_.x) ==(,_-x0)(_- x,)...(._-h,). (5.11)
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where

X, := X(z'q u P) i < p

and

X, := X(qP).

Then the/unction Wp l.f;a polynomial tn x and _. ( illdepcndenl o/q ). whi_h ho_. inleg¢'r
coefficients and is of degree p + I m both x and _.

The modular equation for h usually has a simpler form in the associated

variables u := x I/* and v := _t/R. In this form the 5th-order modular equation is
given by

f/s(u,v) := u6 - v* + 5u/v1(uI - v_) + 4uv(l - u404). (5.12)

In particolar

O2(q p) O,(q) u-'O2 and --- =
O,(q,) O,(q)

are related by an algebraic equation of degree p + 1.
The miracle is not over. The pth-order multtpher (for 2_) is defined by

X(k(qr))X(k(q)) [O,(q') 1-'M,(k(q),k(q')) := 0--_-_-] (5.13)

and turns out to be a rational function of k(q t) and k(q).
One is now in possession of a pth-order algorithm for K/_t, namely: Let

k, :- k(qP'). Then

2X(ko)
, M;'(ko.k,)M,'(k,.k,)M,'(k,.k,)....

This is an entirely algebraic algorithm. One needs to know the pth-order modular
equation for X. to compute k,, t from k, and one needs to know the rational
multiplier Mp. The speed of convergence (O(cP'), for some c < !) is easily deduced
from (5.13) Imd (5.9).

The function X(t) is 1-I on F and has a well-defined inverse, X - i with branch
points only at 0, 1 and o0. This can be used to provide a one line proof of the "big"
Picard theorem that a nonconstant entire function misses at most one value (as does
exp). Indeed, suppose g is an entire function and that it is never zero or one; then
¢xp(_.- l(g( z ))) is a bounded entire function and is hence constant.

Littlewood susgeSled that, at the fight point in history, the above would have
been a strong candidate for a 'one line doctoral thesis'.

6. Rammmjan's! Solvable Mod_lm' Equtions. Hardy [19] commenting on
Ramanujan's work on elliptic and modular functions says

It Js here that both the profundity and limitatwns o/Ramanujan's knowledge
stand out most sharply.

We present only one of Ramanujan's modular equations.
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TIIFORi:M 2.

where /or l = I and 2

wllh

50,(q _')
O_(q) I -__/_ + d/_, (6.1)

50_(q _)
x O_(q) I and .r:= (x- I) z + 7.

This is a slightly rewritten form of entry 12(iii) of Chapter 19 of Ramanujan's

Se,'o,,d Nolem,ok (see I'II, where BerndCs proofs may be studied). One can think of

Ramanujan's quintic modular equation as an equation in the multiplier M e of
(5.13). The initial surprise is that it is solvable. The quintic modular relation for X,

Ws. and the related equation for _1/_ _s, are both nonsolvable. The Galois group of
the sixth-degree equation _s (see (5.12)) over O(v) is A s and is nonsolvable. Indeed

both Hermite and Kronecker showed, in the middle of the last century, that the

solution of a general quintic may be effected in terms of the solution of the

5th-order modular equation (5.12) and the roots may thus be given in terms of
the thela functions.

In fact, in general, the Galois group for We of (5.11) has order p(p + IXp - 1)

and is never solvable for p > 5. The group is quite easy to compute, it is generated
by two permutations, if

Y

q:= e'" then _--, T + 2 and 1-
(2_ + !)

are both elemenls of the ,_-group and induce permutations on the _, of Theorem ].

For any fixed p. one can use the q-expansion of (5.]0) to compute the effect of

these transformations on the ),,. and can thus easily write down the Galois group.

While Wp is not solvable over 0(),), it is solvable over 0(_, )'o). Note that )'0 is

a root of Wp. It is of degree p + l because W, is irreducible. Thus the Galois group

for Wp over O( X. '_0) has order p( p - 1). For p - 5, 7. and l I this gives groups of

order 20, 42. and I I0. respectively, which are obviously solvable and, in fact, for

general primes, the construction always produces a solvable group.

From (5.8) and (5.10) one sees that Ramanujan's modular equation can be

rewritten to give '_s solvable in terms of _'0 and _. Thus, we can hope to find an

explicit solvable relation for _,p in terms of _. and _0. For p - 3, Wp is of degree 4

and is, of course, solvable. For p = 7, Ramanujan again helps us out, by providing a

solvable seventh-order modular identity for the closely related eta function defined
by

,_(q) := q"_ _ (1 - q2,).
n--[

The first interesting prime for which an explicit solvable form is not known is the

"endecadic'" (p = ] 1) case. We consider only prime values because for nonprime
values the modular equation factors.
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This leads Io the interesting problem of mechanically constructing these equa-

lions. In principle, and to some exlen[ in practice, this is a purely compulalional

problem. Modular equations can be computed fairly easily from (5 11) and even

more easily in the associaled variables u and v. Because one knows a prior| bounds

on the size of Ihe (integer) coel'ficienls of the equalions one can perform these

calculations exaclly. The coefficients of the equalion, in the variables u and t'. grow

at mosl like 2". (See [llJ.) Computing [he solvable forms and the associated

compulalional problems are a lillle more intricate--though still in principle entirely
mechanical. A word of caution however: in Ihe variables u and t, the endecadic

modular equalion has largesl coefficient 165, a three digil integer. The endecadic

modular equalion for the inlimalely relaled function J (Klein's absolute mvarlant)has coefficienls as large as

270909647855313899315632002g103_i226311929052227303 × 29231,_5:,0i i :53.

it is, therefore, one [hing Io solve Ibese equations, il is entirely another matter [o
present them wilh Ihe economy of Ramanujan.

The paucity of Ramanujan's background in complex analysis and group theory
leaves open Io speculation Ramanujan's melhods. The proofs given by Berndl are

difficult, in the sevemh-order case, Berndl was aided by MACSYMA--a sophisli-

caled algebraic manipulation package. Berndt comments after giving lie proof of
various sevenlh.-order modular identilies:

Of course, the proof that we have given is qmte unsatisfactorv because ir is a

verification that could not have been achieued without knowledge of the result.

Ramanujan obviously possessed a more natural, transparent, and ingemou$proof.

7. Modular FXlm{,lo m and Pl. We wish Io connect the modular equations of

Theorem 1 to pi. This we contrive via the [unction alpha defined by:

a(r): E'(k) _.

It(i,) (2K(k))_. (7.1)
where

k:'k(q) and q:-e-'_

This a/lows one to rewrite Legendre's equation (5.3) in a one-sided form without theconjugate variable as

= Ic[¢_E - (¢; _ _(r))lcj" (7.2)

We have suppressed, and will continue 1o suppress, the k variable. With (5.6) and
(5.7) at hand we can wrile a q-expansion for a, namely,

1 _" n2(-q) ''

- _f;4.--=
_. C-q)"

["-_'_ q"V (7.3)
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and we can see that as r tends to infinily q = e "¢" tends to zero and a(r) tends Io
I/_. In fact

o(r) - - ,= 8 - e -7, (7.4)

The key now is iteratively to calculate or. This is Ihe content of the next theorem.

TllEORI-M 3. Let /% := k(q), k= := k(q p) and Mp := Mp(/,'0, kt) as in (5.13).
Tht'll

where " represents the full derwatwe o/ M# wteh respect to k o. In particular, a ix
a/gebrmc lot rallonal arguments.

We know that K(kl) is relaled via Mp to K(k) and we know that E(k) is

related via differentialion to K. (See (5.7) and (5.13),) Note that q ---* qP corre-

sponds IOr --. pZr. Thus from (7.2) some relalion like that of the above theorem

must exist. The actual derivation requires some careful algebraic manipulation (See

[ii]. where it has also been made entirely explicit for p := 2. 3, 4, 5, and 7, and

where numerous algebraic values are determined for a(r).) in the case p ,- .5 we

can specialize with some considerable knowledge of quintic modular equations to
gel:

THEOREM 4. Let s := I/MS(ko, kt). Then

_f(_'- 5) ]a(25r) = sZa(r) - 4r [---_----- + i/s(s 2 - 2s + 5) .

This couples with Ramanujan's quinlic modular equation to provide a derivation of
Algorithm 2.

Algorithm I results from specializing Theorem 3 with p := 4 and coupling it with

a quartic modular equation. The quartic equation in question is just two steps of the
corresponding quadratic equation which is Legendre's form of the arithmettc

geomelric mean iteration, namely:

2_
l+k

An algebraic pth-order algorithm for vr is derived from coupling _rem 3 wilh

a pth-ordcr modular equation. The substantial details which are skirted here are
available in Ill].

8. Ramanujan's sum. This amazing sum,

1 _ _0 (4n)! [1103 + 26390n],, 98oi _ (._), 3_6T.

is a specialization ( N = 58) of the following result, which gives reciprocal series fo.

Ir in terms of our function alpha and relaled modular quantities.
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TIII:OItI_M 5.

where,

with

and

= .-,, (._)' ._"'

XA/ :_ 4kN(k_) 2 +_2.g_ I_ )(I +k_)' (x"

I + k 2 4 gN'2 + n_/_ -2

(x.I)

Here g is related to k by
-I

4k(k') 2 (g12 "t" g 12 )
(! + k2) 2 2

as required in Theorem 5. We have actually done more than just use Clausen's

identity, we have also transformed it once using a standard hypergeometric substitu-

tion due to Kummer. Incidentally, Clausen was a nineteenth-century mathematician

who, among other things, computed 250 digits of _r in 1847 using Machin's formula.

The desired formula ($.1) is obtained on combining these pieces.

Even with Theorem 5, our work is not complete. We still have to compute

k_i:= k(e "_) and at.:= a(58).

In fact

/(,, ,= k(e "_'_), x" = (/,_,)_/(2/(,,).

Here (¢). Is d_e rising factorial: (¢). := ¢(¢ + ]X¢ + 2) ..- (¢ + n - I).

Some of the ingredients for the proof of Theorcm 5, which are detailed in [I I],

are the following. Our first step is to write (7.2) as a sum after replacing the E by K

and dK/dk using (5.7). One then uses an identity of Clausen's which allows one to

write the square of a hypergeometric function 2Ft in terms of a gcneralized

hypergeometric 3F2, namely, for all k one has

+ -,r, + ,,

(')(')l')( ' 1'"
.-o (1).(I). -!
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is a well-known #nt.orlanl related to the fundamental solution to Pelrs equation for
29 and it turn_ out that

"'" = --_--/(99¢29 - 4_)(9,)_ - 70 - )32¢_).

One can. in principle, and for N := 5g, probably in practice, solve for k_ by directly
.,.)lying the NIh-order equation

W_(k_.l - _,) :0.

For N = 5g, given that Ramanu.)an [26] and Weher [38i have calculated gsx for us,

verification by this melhod is somewhat easier though it still requires a tractable

form of H'_MAclually, more sophisticated number-theoretic techniques exist for

computing k s (these numbers arc called singular moduh). A description of such

techniques, including a reconstruction of how Ramanujan might have computed the

various singular moduli he presents in 1261; is presented by Watson in a long series

of papers commencing with [36]; and some more recent derivations are given in [! I]
and 1301. An inspection of Theorem 5 shows that all the constants in Series ! are

determined from g_. Knowing, is equivalent to deternuning that the number 1103
is correct.

It is less clear how one explicitly calculates ass in algebraic form, except by brute

force, and a considerable amount of brute force is required: but a numerical

calculation to any reasonable accuracy is easily obtained from {7.3) and 1103
appears! The reader is encouraged to try this to, say, 16 digits. This presumably is

what Ramanujan observed. Ironically, when Gosper computed 17 million digits of _r

using Sum I, he had no mathematical proof that Sum I actually converged to I/¢,
He compared ten million digits of the calculation to a previous calculation of
Kanada et al. This verification thai Sum 1 is correct to ten million places also

provided the first complete proof that asa is as advertised above. A nice touch--that
the calculation of the sum should prove itself as it goes.

Roughly this works as follows. One knows enough about the exact algebraic

nature of the components of d,(N) and xN to know that if the purported sum (of

positive terms) were incorrect, thai before one reached 3 million digits, this sum
must have ceased to agree with !/=. Notice that the components of Sum 1 are
related to the solution of an equation of degree 58, but virtually no irrationality

remains in the final packaging. Once again, there are very good number-theoretic

reasons, presumably unknown to Ramanujan. why this must be so (.58 is at least a

good candidate number for such a reduction). Ramanujan's insight into thi_
marvellous simplification remains obscure.

Ramanujan [261 gives 14 other series for 1/=, some others almost as spectacula_
as Sum !--and one can indeed derive some even more spectacular related series,'

He gives almost no explanation as to their genesis, saying only that there ar_

"corresponding theories" to the standard theory (as sketched in section 5) fron
which they follow. Hardy. quoting Mordell, observed that "it is unfortunate tha
Ramanujan has not developed the corresponding theories." By methods analogou-

"(Added m proof) Many related series due to Borwein and Bocwein and to Chudnovsky an

Chudnovsky appear in papers in Ramanujan Remsaed. Academic Press. 1988
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to those used above, all his series can be derived from the classical theory [Ill.

Again it is unclear what passage Ramanujan took 1o lhcnt, but it must in some part
have diverged from ours.

We conclude by writing down another extraordinary series of Ramanujan's.

which also derives from the same general body of theory.

1 _ J2n_42n + .5

This series is composed of fractions whose numerators grow likt.. 2"" and whos_

denominators are exactly 16 - 2 It'. In particular this can be u_d to calculate the

second block of n binary digits of _ without calculating the fJrsl n binary digits.

This beautiful observation, due to Holloway. results, disappoinlingly, in no intrinsic
reduction in complexity.

9. Sources. References [7], fill, [19], [26], [36], and [37] relate directly Io Ra-

manujan's work. References [2], [81, [9], [10], [12], [22], [24], [27l, [29], and [31]

discuss the computational concerns of the paper.

Material on modular functions and special functions may be pursued in ill. [6],

[9], [14], [15], [18]. [20], [28], [341, [38], and [391. Some of the number-theoretic

concerns are touched on in (3]. 161.191,[111, [16]. 1231.and [35J.

Finally, details of all derivations are given in [i I].
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